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We give a method for computing nontrivial solutions to the nonlinear partial differen- 
tial equation PY + X2 sinh ?P = 0, with Y = 0 on a square boundary. The method 
consists of a Newton-Raphson iteration, in which successive corrections to Y must 
satisfy a linearized partial differential equation. We give a direct solution algorithm 
for the linearized equation, which is suitable for small meshes. Using this method, we 
establish the nonuniqueness of solutions by finding six solutions for the same value 
of A. Calculation of these solutions required from 4 to about 40 iterations each, de- 
pending upon the accuracy of the initial approximation. These solutions are the lowest- 
mode members of three classes of solutions possessing (1) rectangular, (2) quasicylindri- 
cal, and (3) diagonal symmetry. 

I. JNTRODTJCTION 

Statistical mechanical considerations applied to equilibrium states of a two- 
dimensional guiding center plasma [l] lead to the following equation for the 
electrostatic potential 4(X, Y) inside a long waveguide. 

((a2/8X2) + (a2/i3Y2)) t$ = -457e[n+e-+“+ - n-eBed], (1) 

where e (>O) is the absolute value of the electronic charge, /3 is a negative [l] 
constant playing the role of the familiar I/U of statistical mechanics, and n, and 
n- are constant number densities of positive and negative charges at the boundaries, 
where 4 is taken to be zero. 

The coordinates X and Y define a plane cutting across the waveguide. There is 
assumed to be no dependence on the coordinate 2 (along the length of the wave- 
guide). 

A set of physically interesting solutions arise [2] when we take 

n +. = n- = n, (2) 
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and look for solutions inside a square of side L. In this case, we can put (1) into 
the dimensionless form 

where 

Q2’P + X2 sinh Y = 0, 

y = 4% 

and 

X2 = -87re2nflL2, 

v2 = (ayax2) + (P/ajl”), 

with the new dimensionless coordinates x = X/L and y 
conditions accompanying (3) are 

Y=O 

on the boundary of the square 0 < x < 1,0 < y < 1. 

= 

(3) 

(4) 

(5) 

(6) 

Y/L. The boundary 

(7) 

Equation (3) is nonlinear, and is not subject to the usual uniqueness theorems 
which arise from the investigation of linear equations. In fact we have thus far 
found (and shall describe below) six different types of solutions for the same value 
of X. These multiple solutions describe equilibrium states with the same physical 
parameters, including size and temperature. The physical implications of these 
states will be discussed elsewhere [3]. 

Equations (3) and (7) are satisfied trivially by Y(x, JJ) = 0. Attempts to find 
nontrivial solutions by the methods of Marder and Weitzner [4] or by straight- 
forward laplacian operator inversion have been unsuccessful [5, 61. In order to 
find the nontrivial solutions, we shall construct an iterative method which 
specifically excludes the solution Y = 0. 

Let us begin with a trial solution W(x, v). We define a residual function 

R(x, v) = (V2 W + h2 sinh I+‘)/( W, W), 63) 

where the inner product (A, B) of two real functions A and B is defined by 

6% B) = Jb’ dx IO1 dy &x, v) B(x, v>. (9) 

Thus R tends to zero as W approaches a nontrivial solution, but diverges if W 
tends to zero everywhere. 

If we introduce a small variation 6 W(x, v) in W, the resulting linear change in R 
is 

6R(x, y) = (V2 6 W + X2 6 W cash W - 2(S W, W) R)/( W, W). (10) 

581/16/4-4 
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We attempt to bring R to zero in the sense of a Newton-Raphson iteration, i.e., 
by setting SR = -R. The variation SW must then satisfy the integro-differential 
equation 

V2SW+h2SWcosh W-2(SW, W)R = -(W, W)R. 

In terms of a function u which satisfies 

(11) 

V2v + Pv cash W = (W, W) R, (12) 

subject to v = 0 on the boundary, the solution to (11) is 

s wx, 39 = v(x, YMW, w/w, w - 1 I. (13) 

Having found SW, we correct the trial solution: 

w+ w+sw. (14) 

Nontrivial solutions to (3) have been found using the iteration loop consisting of 
the operations called for in Eqs. (8), (12), (13) and (14) carried out in cyclical 
order. The initial approximation W(x, y) must be chosen judiciously with some 
thought given to the probable form of the particular solution ?P(x, y) being sought. 
Most of the solutions generated thus far began with products of sine waves in 
the x and y directions with some suitably chosen amplitude. Before describing the 
types of solutions found, we shall outline the method used to solve the linearized 
Eq. (12). 

II. DIRECT SOLUTION OF THE LINEARIZED EQUATION 

The iteration loop (3)-( 14) calls for the solution of the linear partial differential 
Eq. (12) once per iteration cycle. The choice of a numerical solution method for 
(12) should take into account the following two points. (1) The right-hand side 
of (12) changes significantly in magnitude and spatial form each time the cycle 
(8)-(14) is executed, so that no accurate first approximation for z, is available; 
and (2) the finite difference representation of the operator on the left-hand side 
of (12) (see (15) below) is a matrix which is nondiagonally dominant and is neither 
positive or negative definite. The first point suggests that iterative methods in 
general are at a disadvantage in that each pass through Eqs. (8)-(14) might require 
many subiterations for convergence of (12). The second point detracts from the 
usefulness of familiar successive over relaxation (SOR), alternating direction 
implicit (ADI), and variational methods [7]. Application of these methods in this 
case can result in convergence for some spectral components of the solution, 
but divergence for others. 
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Thus we are led to consider a direct solution method similar to one used by 
Roache [8] to solve Poisson’s equation. The method is conceptually simple, but 
in practice roundoff error propagation restricts its use to small meshes. We can 
represent (12) on a discrete rectangular mesh (NX by NY) by a five-point difference 
equation of the form 

[v(i + 1, j) - 2u(i, j) + v(i - 1, j)]/Sx2 + [u(i,j + 1) - 2u(i, j) + U(i,j - 1)1/G2 
+ 4(&j) 4kj) = ~(~A (15) 

for 2 < i < NX - 1 and 2 < j < NY - 1. The boundary condition is 
v = 0 on the boundaries, i.e., u(1, j) = v(NX,j) = v(i, 1) = u(i, NY) = 0. If 
the solution were known on both rows j = 1 and j = 2, one could in principle 
find it everywhere. This would be accomplished by a forward sweep in which one 
solves (15) for v(i, j + 1) in terms of values on rows j andj - 1. This sweep would 
continue row-by-row until the entire mesh has been supplied with known values 
of v. 

The boundary condition sets v = 0 on row j = 1, and at the end points (1,2) and 
(NX, 2) of row j = 2. Thus before beginning the forward sweep we must determine 
NX - 2 unknown ZJ values on rowj = 2. To find these we calculate a set of “basis 
functions” uk , linearly independent solutions to (15) satisfying vk = 0 on the three 
boundaries i = 1, j = 1, and i = NX. These solutions are swept forward after 
definition on rows j = 1 and 2, and nonzero values result on row j = NY. We 
then form a linear combination of the vlc which satisfies the boundary condition 
on the fourth boundary j = NY, and is the desired solution to (15). 

We first define v1 from 

v,(i, 1) = 0, 

v,(i, 2) = 0, (16) 

sweeping the solution across the mesh using (15). Then we calculate the other 
v,,2<k<NX-1,from 

Vk(i, 1) = 0, 

UkG, 2) = bc 9 
(17) 

where &, = 1 for i = k, and is zero otherwise. The solutions initiated by (17) 
are swept forward with s = 0, i.e., the homogeneous form of Eq. (15). 

The desired solution to (15) is the linear combination 

NX-1 

v(i, j> = s(i, .i) + C ckvk(Cj), 
k=2 

(W 



364 B. E. MCDONALD 

which is zero on row j = NY. Thus the coefficients ck are determined from the 
following set of linear equations. 

NX-1 

2 < i < NX - 1. Since only the row j = NY is used in determining clc, only this 
row is retained from each of the vrz in order to conserve core storage. Once the 
cg are known, we calculate v(i, j) by a forward sweep initiated by 

v(i, 1) = 0, 

v(i, 2) = ci , 2<‘<NX-1. 
(20) 

The propagation of roundoff errors during a forward sweep is best described 
by considering Poisson’s equation with 6x = Sy. A more complete description 
is given by Roache [8]. As random errors are introduced, an exponentially 
increasing spurious solution d is initiated which corresponds to the fastest growing 
solution of V2v” = 0 which the discrete grid can mimic. This solution changes sign 
from grid point to grid point in both directions, with constant amplitude in x and 
exponentially increasing amplitude in y. The continuous analog for this solution 
is v” cc sin kx exp ky. One can show readily that the amplitude of this spurious 
solution increases by a factor of 3 + 2 d/z = 5.83 from row-to-row in they direction. 
Thus an initial roundoff error of 10-16increases to 1O-5 after having been propagated 
14 rows forward. This limits the application of the method to small meshes, but 
even so, valuable information about the solutions of (3) has been gained through 
its use. Most of the solutions found thus far possess some kind of symmetry which 
allows (3) to be solved in a quadrant of the unit square, effectively increasing the 
resolution by a factor of 2. 

III. DISCUSSION OF THE SOLUTIONS 

Figures 1-6 show six different types of solutions of (3) obtained for X2 = 19. 
The behavior of the solutions as a function of h2 and their physical implications 
will be discussed in a future paper [3]. The existence of these different solutions for 
the same boundary conditions and value of h2 establishes that (3) does not possess 
a unique solution. This nonuniqueness was suggested by Fisher [5], after 
investigation [4, 91 of an equation similar to (3), but with the hyperbolic sine 
replaced by exp. 

The six solutions shown below were calculated on a 15 x 15 grid. The first four 
possess rectangular symmetry, and were calculated in one quadrant only by a 
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FIG. 1. Contours of constant Y for X2 = 19. Maximum and minimum values of Y are 
Y max. = 0.630, Ymrn = 0. Contour spacing for Figs. l-5 is 0.25 Ymax . Tick marks on the border 
are grid-point locations. Solid contours are positive, dashed contours are negative, and dot-dash 
contours are zero. 

0 X I 

FIG. 2. X2 = 19, Ymax = 4.781, Ymi, = -4.781. 

FIG. 3. ha = 19, Ymsx = 5.657, Ymln = -5.657. 
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4. A2 = 19, Y,,, = 6.123, Ymin = -3.478. 

5. he = 19, Y,,, = 3.666, Y’min = -3.666. 

FIG. 6. he - 19, YIMX = 3.513, Ym, = -4.888. Contour spacing is 0.25 1 Ymin 1 . 
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simple variation of the method given above. These solutions are probably 
adequately resolved, since they vary smoothly over the unit square, which is covered 
by an effective 28 x 28 grid. The last two solutions have been computed by the 
above method without change, with an overall resolution of 15 x 15 points. 
Despite the lower resolution, they do point out an interesting alternative to the 
class of solutions represented in Figs. l-3. 

As an indication of the accuracy to which (3) has been solved for each of the 
cases, we define 

f(i,j) = O”Y(i,j) + X2 sinh Y(i, j), (21) 

g(i, j) = / d2Y(i, j)i + 1 h2 sinh Y(i,j)l, (24 

where A2 is the finite difference operator used in (15). We then define a root-mean- 
square error, 

E = (c f”/C g2yz, 
where the summation is over the interior mesh, 2 < i < 14, 2 <j < 14. The 
RMS errors for the solutions in Figs. l-6 are, repectively, 1.70, 1.97, 0.83, 1.18, 
4.71, and 0.56 times 1O-6. 

Thus the finite difference equations have been solved quite accurately. However, 
these figures do not in themselves reveal the closeness of the discrete solutions 
given here to their continuous analogs. We can obtain a measure of the discreteness 
error by comparing results from two different expressions for the electrostatic 
energy. Let us define 

8, = ’ dx ’ dy (VY)2, s s 0 0 

8, = - fdxj1dyYV2Y. 
0 0 

(24) 

In the continuum limit, the boundary condition (7) results in 6, and g2 being equal. 
For the discrete solutions, the following second-order accurate expressions were 
used as approximations to b, and b, . 

I-1 J-l 

El = 4 C C (W + 1, .i + 1) - W, jN2 
i=l j-1 

+ (W, j + 1) - W + 1, jN2, (26) 
I-1 J-l 

E2 = - c c y(j,i)[y(j + Lj) + y(j - l,j) + W,j + 1) 
i=2 h-2 

+ y(i, j - 1) - 4Y(i, j)]. (27) 
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Here I and J are the total numbers of mesh points in the x and y directions, allowing 
for folding into four quadrants in the cases of Figs. 1-4. For the six solutions given 
here, I and J are equal, and are 28 for Figs. 1-4, and 15 for Figs. 5 and 6. The 
different summation limits in (26) and (27) are due to cell-centered differencing in 
in (26) as opposed to grid point-centered differencing in (27). Values for E1 and E, 
and their relative difference, 2 1 El - E2 //(El + E,), are given in Table I. One 
notices that the relative differences are in the range 0.2-7 ‘A, and that the greater 
differences belong to the more crudely resolved solutions Thus we take these 
relative differences as indicators of the magnitude of the truncation error for each 
of the cases. 

TABLE I 

Electrostatic Energies Calculated Independently from 
(26) and (27) for Figs. l-6 

Relative 
difference 

1 4.88 4.89 .002 
2 13.20 13.42 .017 

3 29.18 30.58 .047 

4 9.22 9.49 .029 

5 7.01 7.18 .024 

6 9.18 9.85 .070 

The solutions in Figs. 1-3 are the first of a series of solutions generated by scale 
changes and folding. We find the Nth solution in the series by solving the trans- 
formed problem 

Q12Y + P/N2 sinh Y = 0, (28) 

with x’ = N . x and y’ = N . y, subject to Y = 0 on the boundary of the square 
0 < x’ < 1, 0 < y’ , < 1. We calculate the lowest-mode solution to (28) (i.e., as 
in Fig. 1) and place N by N of these side-by-side in checkerboard fashion, with 
changes of sign from one to another. The result in xy space is a solution to (3) 
satisfying the proper boundary conditions. The checkerboard pattern satisfies 
(3) on the interior of each of the subsquares as a result of (28). On the boundaries 
of the subsquares, (3) is satisfied for the following reasons. Along one of the sides 
of a subsquare, y/ is zero, and thus the second derivative in that direction is zero. 
In the transverse direction, a point of inflection results from the asymmetrical 
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folding, so that the second derivative in this direction is also zero. Thus (3) is 
satisfied everywhere within the “super square” 0 < x < 1, 0 < y < 1. 

Another sequence of solutions is suggested by Figs. 1 and 4. One notices that the 
contours near the centers of Figs. 1 and 4 are approximately circular, but that 
angular dependence becomes more pronounced near the square boundaries. This 
suggests a comparison of these solutions with solutions of (3) in cylindrical coordi- 
nates with no angular dependence. Such solutions have been investigated recently 
by Fisher [5]. One finds these cylindrical solutions by solving the one-dimensional 
radial equation 

(d2/dr2) Y + (l/r)(d!P/dr) + X2 sinh Y = 0, (2% 

subject to continuity of Y at the origin, and Y = 0 at a suitable value of r. For 
a given X, a sequence of solutions to (29) exists, with increasing numbers of radial 
oscillations and varying values of slope at the outer boundary. One finds that 
near the centers, the solutions of Figs. 1 and 4 bear a close resemblance to the two 
lowest-mode solutions of (29). These solutions might be thought of as the result of 
a continuous process beginning with a solution of (29) inside a circular boundary, 
followed by a gradual deformation of the boundary into a square, maintaining 
(3) all the while. 

A third sequence of solutions is suggested by Figs. 1, 5, and 6, with the primary 
variation being along a diagonal of the square. To date we have found one higher- 
mode solution than the one in Fig. 6, although the current limitation to small 
meshes results in rather poor resolution. This solution has a zero diagonal as 
does Fig. 5, and has three nodes along the other diagonal. Other types of solutions 
no doubt exist, the most obvious being a class of solutions with rectangular 
symmetry, having different numbers of nodes in the x and y directions. 
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